USN

10MAT11

First Semester B.E. Degree Examination, June/July 2017

Engineering Mathematics - I

Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, choosing at least two from each part.

PART - A

1 a. Choose the correct answers for the following:
(04 Marks)
i) The $\mathrm{n}^{\text {th }}$ derivative of $\cos ^{2} \mathrm{x}$ is
A) $2^{n} \cos \left(2 x+\frac{n \pi}{2}\right)$
B) $2^{n-1} \cos \left(2 x+\frac{n \pi}{2}\right)$
C) $2^{n-1} \cos (2 x+n \pi)$
D) $2^{n-1} \cos \left(\frac{n \pi}{2}\right)$
ii) The Maclaurin's series of $f(x)=K$ (constant) is
A) $f(x)=K$
B) $f(x)=0$
C) does not exist
D) $f(x)=K$!
iii) The value of C of the Cauchy mean value theorem for $f(x)=e^{x}$ and $g(x)=e^{-x}$ in $[4,5]$ is
A) $\frac{5}{2}$
B) $\frac{3}{2}$
C) $\frac{9}{2}$
D) $\frac{1}{2}$
iv) The $n^{\text {th }}$ derivative of $y=x^{n-1} \cdot \log x$ is
A) $y_{n}=\frac{n!}{x}$
B) $y_{n}=\frac{(n+1)!}{x}$
C) $y_{n}=\frac{(n-1)!}{x}$
D) $y_{n}=\frac{n!}{x^{2}}$
b. If $x=\tan (\log y)$, prove that $\left(1+x^{2}\right) y_{n+1}+(2 n x-1) y_{n}+n(n-1) y_{n-1}=0$.
(06 Marks)
c. Expand $\log (\sec x)$ by Maclaurin's series expansion upto the term containing x^{4}.
(05 Marks)
d. State and prove Lagrange's mean value theorem.
(05 Marks)
2 a. Choose the correct answers for the following:
(04 Marks)
i) $\lim _{x \rightarrow \infty}\left[a^{1 / x}-1\right] x$ is of the following form
A) $0 \times \infty$
B) ∞°
C) 0^{∞}
D) $\infty-\infty$
ii) If S is the arc length of the curve $x=g(y)$ then $\frac{d s}{d y}$ is
A) $\sqrt{1+y_{1}}$
B) $\sqrt{1+y_{1}^{2}}$
C) $\sqrt{\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d x}{d y}\right)^{2}}$
D) $\sqrt{1+\left(\frac{d x}{d y}\right)^{2}}$
iii) The angle between radius vector and the tangent for the curve $\mathrm{r}=\mathrm{a}(1-\cos \theta)$ is
A) $\frac{\theta}{2}$
B) $-\frac{\theta}{2}$
C) $\frac{\pi}{2}+\theta$
D) $\frac{\pi}{2}-\frac{\theta}{2}$
iv) Two polar curves are said to be orthogonal if
A) $\phi_{1} \cdot \phi_{2}=0$
B) $\tan \phi_{1} \cdot \tan \phi_{2}=-1$
C) $\frac{\phi_{1}}{\phi_{2}}=\frac{\pi}{2}$
D) $\phi_{1} \cdot \phi_{2}=-1$
b. If $y=\frac{a x}{a+x}$, then show that $\left(\frac{2 \rho}{a}\right)^{2 / 3}=\left(\frac{y}{x}\right)^{2}+\left(\frac{x}{y}\right)^{2}$ where ρ is the radius of curvature at any point (x, y).
(06 Marks)
c. Evaluate $\lim _{x \rightarrow 0}\left[\frac{\sin x}{x}\right]^{\frac{1}{x^{2}}}$.
(05 Marks)
d. Derive an expression for the radius of curvature in polar form.
(05 Marks)

3 a. Choose the correct answers for the following :
(04 Marks)
i) If $z=x^{2}+y^{2}$ then $\frac{\partial^{2} z}{\partial x \partial y}$ is equal to
A) 0
B) 2
C) $2 y$
D) $2 x$
ii) The Taylor's series of $f(x, y)=x y$ at $(1,1)$ is
A) $1+[(x-1)+(y-1)]$
B) $1+[(x-1)+(y-1)]+[(x-1)(y-1)]$
C) $(x-1)(y-1)$
D) None of these
iii) If $z=f(x, y)$ then the relative error in z is
A) $\frac{\delta z}{x}$
B) $\delta z-y$
C) $\frac{\delta z}{z}$
D) $z-\delta z$
iv) If $x=r \cos \theta, y=r \sin \theta$ then $\frac{\partial(r, \theta)}{\partial(x, y)}$ is
A) r
B) $\frac{1}{r}$
C) 1
D) -1
b. Find the extreme values of $f(x, y)=x^{3}+3 x y^{2}-15 x^{2}-15 y^{2}+72 x$.
(06 Marks)
c. If $x=r \cos \theta, y=r \sin \theta$, prove that $\frac{\partial^{2} r}{\partial x^{2}}+\frac{\partial^{2} r}{\partial y^{2}}=\frac{1}{r}\left[\left(\frac{\partial r}{\partial x}\right)^{2}+\left(\frac{\partial r}{\partial y}\right)^{2}\right]$.
(05 Marks)
d. The diameter and altitude of a can in the form of a right circular cylinder are found to be 4.5 cms and 8.25 cms respectively. The possible error in each measurement is 0.1 cm . Find the approximate error in the volume and lateral surface area.
(05 Marks)
4 a. Choose the correct answers for the following :
(04 Marks)
i) The gradient, divergence, curl are respectively
A) scalar, scalar, vector
B) vector, scalar vector
C) scalar, vector, vector
D) vector, vector, scalar
ii) $\overrightarrow{\mathrm{F}}=y^{2} z \hat{i}+z^{2} x \hat{j}+x^{2} y \hat{k}$ is
A) constant vector
B) solenoidal
C) scalar
D) none of these
iii) curl grad ϕ is
A) grad curl ϕ
B) curl $\operatorname{grad} \phi+\operatorname{grad} \operatorname{curl} \phi$
C) zero
D) does not exist
iv) If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ then curl \vec{r} is
A) 0
B) 1
C) -1
D) ∞
b. If $\vec{F}=\nabla\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, find $\operatorname{div} \vec{F}$ and $\operatorname{curl} \overrightarrow{\mathrm{F}}$.
(06 Marks)
c. Prove that $\operatorname{curl}(\phi \vec{F})=\phi \operatorname{curl} \overrightarrow{\mathrm{F}}+\operatorname{grad} \phi \times \overrightarrow{\mathrm{F}}$.
d. Prove that the cylindrical coordinate system is orthogonal.

PART - B

5 a. Choose the correct answers for the following:
(04 Marks)
i) The value of the integral $\int_{0}^{\pi / 2} \sin ^{7} x d x$ is
A) $\frac{35}{16}$
B) $\frac{16}{35}$
C) $-\frac{16}{35}$
D) $\frac{18}{35}$
ii) $x^{2}+y^{2}=x^{2} y^{2}$ is symmetric about
A) x - axis
B) $y-a x i s$
C) $y=x$
D) All A, B, C
iii) The value of $\int_{0}^{\pi} \sin ^{4} x d x$ is
A) $\frac{3 \pi}{8}$
B) $\frac{3}{8}$
C) $\frac{\pi}{16}$
D) $\frac{\pi}{4}$
iv) Asymptote to the curve $y^{2}(a-x)=x^{3}$ is
A) $y=0$
B) $x=0$
C) $x=a$
D) none of these
b. Evaluate $\int_{0}^{1} \frac{x^{\alpha}-1}{\log x} d x, \alpha \geq 0$ using differentiation under integral sign, find $\int_{0}^{1} \frac{x^{3}-1}{\log x} d x$.
(06 Marks)
c. Obtain reduction formula for $\int_{0}^{\pi / 2} \cos ^{n} x d x$.
(05 Marks)
d. Find the surface area generated by an arch of the cycloid $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$ about the x -axis.
(05 Marks)
6 a. Choose the correct answers for the following:
(04 Marks)
i) For the differential equation $\left[\frac{d^{3} y}{d x^{3}}\right]^{2}+\left[\frac{d^{2} y}{d x^{2}}\right]^{6}+y=x^{4}$ the order and degree respectively are
A) 2,6
B) 3,2
C) 2,4
D) none of these
ii) The solution of the differential equation $\frac{d y}{d x}=e^{x+y}$ is
A) $e^{x}+e^{-y}=c$
B) $e^{-x}+e^{-y}=c$
C) $\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{\mathrm{y}}=\mathrm{c}$
D) $e^{x+y}=c$
iii) The integrating factor of the differential equation $\frac{d x}{d y}+P x=Q$ where P, Q are functions Y is
A) $e^{\text {lpdy }}$
B) $e^{\int p d x}$
C) $\mathrm{e}^{\int \mathrm{ddy}}$
D) none of these
iv) If the differential equation of the given family remains unaltered after replacing $\frac{d y}{d x}$ by $-\frac{d x}{d y}$ then given family of curves is said to be
A) not orthogonal
B) self orthogonal
C) reciprocal
D) none of these
b. Solve $x y\left(1+x y^{2}\right) \frac{d y}{d x}=1$.
(06 Marks)
c. Solve $\left[x \tan \left(\frac{y}{x}\right)-y \sec ^{2}\left(\frac{y}{x}\right)\right] d x+x \sec ^{2}\left(\frac{y}{x}\right) d y=0$.
(05 Marks)
d. Find the orthogonal trajectory of $r^{n}=a^{n} \sin n \theta$.
(05 Marks)

7 a. Choose the correct answers for the following :
(04 Marks)
i) Which of the following is not an elementary transformation
A) adding two columns
B) adding two rows
C) squaring all elements of the matrix
D) multiplying a row by a non-zero number
ii) The exact solution of the system of equations $10 x+y+z=12, x+10 y+z=12$, $x+y+10 z=12$ by inspection is
A) $(-1,1,1)$
B) $(-1,-1,-1)$
C) $(1,1,1)$
D) $(0,0,0)$
iii) If r is the rank of the matrix [A] of order $m \times n$ then r is
A) $r \leq$ minimum of (m, n)
B) $r \leq n$
C) $r>n$
D) $r \geq m$
iv) Which of the following is in the normal form
A) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
B) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
C) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right] \quad$ D) all of these
b. Find the rank of the following matrix by reducing it to the normal form

$$
A=\left[\begin{array}{cccc}
0 & 1 & 2 & -2 \\
4 & 0 & 2 & 6 \\
2 & 1 & 3 & 1
\end{array}\right]
$$

(06 Marks)
c. Find the value of K such that the following system equations possess a non-trivial solution

$$
4 x+9 y+z=0, \quad K x+3 y+K z=0, \quad x+4 y+2 z=0
$$

(05 Marks)
d. Solve the following system of equations by Gauss Jordan method:

$$
x+y+z=9, \quad x-2 y+3 z=8, \quad 2 x+y-z=3
$$

(05 Marks)
8 a. Choose the correct answers for the following :
(04 Marks)
i) A square matrix A is called orthogonal if
A) $\mathrm{A}=\mathrm{A}^{2}$
B) $A^{1}=A$
C) $\mathrm{AA}^{1}=\mathrm{I}$
D) none of these
ii) The eigen values of the matrix A exist if
A) A is a square matrix
B) A is singular matrix
C) A is any matrix
D) A is null matrix
iii) The matrix of the quadratic form $\mathrm{a}_{11} \mathrm{x}_{1}^{2}+2 \mathrm{a}_{12} \mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{a}_{22} \mathrm{x}_{2}^{2}$ is
A) $\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{12} & a_{11}\end{array}\right]$
B) $\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{12} & a_{22}\end{array}\right]$
C) $\left[\begin{array}{cc}1 & a_{11} \\ a_{11} & 1\end{array}\right]$
D) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
iv) If the eigen vector is $(1,1,1)$ then its normalized form is
A) $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$
B) $\left(\frac{1}{\sqrt{2}}, 0,-\frac{1}{\sqrt{2}}\right)$
C) $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$
D) $\left(-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$
b. Find the eigen values and eigen vector corresponding to the largest eigen value of the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 3 \\
1 & 5 & 1 \\
3 & 1 & 1
\end{array}\right]
$$

(06 Marks)
c. Diagonalize the matrix, $\mathrm{A}=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$.
(05 Marks)
d. Reduce the quadratic form $\mathrm{x}_{1}^{2}+2 \mathrm{x}_{2}^{2}-7 \mathrm{x}_{3}^{2}-4 \mathrm{x}_{1} \mathrm{x}_{2}+8 \mathrm{x}_{2} \mathrm{x}_{3}$ into sum of squares.
(05 Marks)

First/Second Semester B.E. Degree Examination, June/July 2017 Engineering Physics

Time: 3 hrs.
Max. Marks: 100
Note: 1. Answer any FIVE full questions, choosing at least two from each part.
2. Physical constants: $h=6.625 \times 10^{-34}, J-S, C=3 \times 10^{8} \mathrm{~ms}^{-1}, m_{e}=9.1 \times 10^{-31} \mathrm{~kg}, L=1.38 \times 10^{-23} \mathrm{Fm}^{-1}$, $\epsilon_{0}=8.854 \times 10^{-12} \mathrm{Fm}^{-1}, e=1.6 \times 10^{-19} \mathrm{C}$, Avogadro number $N_{A}=6.025 \times 10^{26} / \mathrm{K}$ mole .

PART - A

1 a. Choose the correct answers for the following :
i) The associated wavelength of an electron beam is acceleration from rest through a potential difference of 200 V is
A) $0.868 \AA$
B) $0.0868 \AA$
C) $0.969 \AA$
D) $0.0969 \AA$
ii) In blackbody radiation spectrum, with increase of temperature the maximum intensity position shift towards.
A) Shorter wavelength
B) longer wavelength
C) Entire wavelength
D) no change.
iii) Davisson and Germer succeeded in their experiment in proving
A) Bragg's law
B) Particle nature of electrons
C) Wave nature of electrons
D) That nickel is a crystal
iv) Einstein's photo electric equation is given by
A) $\frac{1}{2} m V_{\text {max }}^{2}=h \gamma-\phi$
B) $\frac{1}{2} m V_{\text {max }}^{2}=h y+\phi$
C) $\frac{1}{2} \mathrm{mV}_{\max }^{2}=\mathrm{h} \gamma-\mathrm{h}_{1}$
D) None of these
(04 Marks)
b. What is Plank's radiation law? Show that Planck's law reduces to Wien's law and Rayleigh Jeans law.
(06 Marks)
c. Define phase velocity and group velocity and derive a relation between them.
(06 Marks)
d. Estimate the potential difference through which a proton is needed to be accelerated so that its de Broglie wavelength becomes equal to $1 \AA$, given mass of proton is $1.673 \times 10^{27} \mathrm{~kg}$.
(04 Marks)
2 a. Choose the correct answers for the following:
i) The energy required for an electron to jump from ground state to the second excited state in a potential well of width L is
A) $\mathrm{E}=\frac{\mathrm{h}^{2}}{\mathrm{~mL}^{2}}$
B) $E=\frac{h^{2}}{4 \mathrm{~mL}^{2}}$
C) $E=\frac{h^{2}}{8 \mathrm{~mL}^{2}}$
D) $\frac{2 h^{2}}{m L^{2}}$
ii) According to max Born's interpretation, $|\psi|^{2}$ represents
A) probability density
B) Energy density
C) Particle density
D) Charge density.
iii) A wave function is an acceptable wave function if it is
A) Finite every where
B) Continuous every where
C) Single valued every where
D) All of these.
iv) If the uncertainty in momentum is large, the uncertainty in wavelength is
A) Small
B) Large
C) Zero
D) None of these
(04 Marks)
b. Obtain the time independent Schrödinger wave equation, in one dimension.
(07 Marks)
c. State and explain Heisenberg's uncertainty principle.
(04 Marks)
d. An electron and a $150 \times 10^{-3} \mathrm{Kg}$ base ball are travelling at a velocity of $220 \mathrm{~m} / \mathrm{s}$, measured to an accuracy of 0.005%. Calculate uncertainty in position of each.
(05 Marks)

3 a. Choose the correct answers for the following :
i) The free electrons in classical free electron theory are treated as
A) rigidly fixed lattice points
B) Gas molecules
C) Liquid molecules
D) None of these.
ii) The electron mobility in a solid is
A) $\mu=\frac{V_{d}}{E}$
B) $\mu=V_{d} E$
C) $\mu=\frac{V_{d}}{L}$
D) $\mu=V_{d} L$
iii) The Fermienergy of a metal at absolute zero temperature is proportional to
A) $n^{1 / 3}$
B) $n^{3 / 2}$
C) $\mathrm{n}^{2 / 3}$
D) n^{2}
iv) The collision time and root mean square velocity of an electron at room temperature are $3 \times 10^{-14} \mathrm{~s}$ and $1 \times 10^{5} \mathrm{~m} / \mathrm{s}$ respectively. The classical value of mean free path of the electron is
A) $3 \times 10^{-19} \mathrm{~m}$
B) $3 \times 10^{-10} \mathrm{~m}$
C) $3 \times 10^{-9} \mathrm{~m}$
D) $3 \times 10^{19} \mathrm{~s}$
(04 Marks)
b. Using the free electron theory, derive an expression for electrical conductivity in metals.
(06 Marks)
c. Discuss the dependence of Fermic factor on temperature.
(06 Marks)
d. Calculate the Fermienergy of sodium at 0 K assuming that it has one free electron per atom and density of sodium is $970 \mathrm{~kg} / \mathrm{m}^{3}$ and atomic weight 23 .
(04 Marks)

4 a. Choose the correct answers for the following:
i) If the radius of hydrogen atom is $0.053 \times 10^{-9} \mathrm{~m}$, then its electronic polarizability is
A) $1.656 \times 10^{-41} \mathrm{Fm}^{2}$
B) $3.035 \times 10^{-40} \mathrm{Fm}^{2}$
C) $5.9 \times 10^{-21} \mathrm{Fm}^{2}$
D) $16.56 \times 10^{-41} \mathrm{Fm}^{2}$
ii) The polarization mechanism that depends on temperature is
A) Electronic
B) ionic
C) orientational
D) Space charge
iii) The relative permeability for diamagnetic materials is
A) >1
B) <1
C) $=1$
D) Zero
iv) Piezoelectric effect is used to convert \qquad energy into \qquad energy.
A) Mechanical, electrical
B) Electrical, mechanical
C) Electrical, light
D) None of these.
(04 Marks)
b. Define dielectric polarization. Discuss different types of polarization mechanics. (07 Marks)
c. Compare soft and hard magnetic materials on the basis of hysteresis curve, Give example and applications for each type.
(05 Marks)
d. The dielectric constant of sulphur is 3.4. Assuming a cubic lattice for its structure, calculate the electronic polarizability of sulphur. The atomic weight and density of suplhur are 32.07 and $2.07 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ respectively.
(04 Marks)

PART - B

5 a. Choose the correct answers for the following:
i) The ratio of Einstein's spontaneous and stimulated emission coefficients is
A) $\frac{8 \pi \mathrm{~h} \lambda^{3}}{\mathrm{C}^{3}}$
B) $\frac{8 \pi h \gamma^{3}}{C^{3}}$
C) $\frac{8 \pi h \gamma^{2}}{\mathrm{C}^{2}}$
D) $\frac{8 \pi \mathrm{~h} \lambda^{2}}{\mathrm{C}^{2}}$
ii) The process of producing population inversion is known as
A) absorption
B) emission
C) pumping
D) None of these
iii) Active centre of $\mathrm{He}-\mathrm{Ne}$ gas loses
A) Ne
B) He
C) Bothe Ne and He
D) None
iv) Image is stored on a hologram in the form of
A) interference pattern
B) diffraction pattern
C) polarization
D) photography
(04 Marks)
Describe the construction and working of $\mathrm{He}-\mathrm{Ne}$ laser.
(07 Marks)
b. What is holography? Explain the recording process in holography.
(05 Marks)
c. A He-Ne laser emits photons of wavelength 632.8 nm with 1 mW average power per pulse.
d. Calculate the number of photons emitted per second.
(04 Marks)
6 a. Choose the correct answers for the following :
i) In an Optical fibre, the core material has refractive index 1.43 and refractive index of clad material is 1.4 , the numerical operator is
A) 0.92
B) 0.29
C) 0.97
D) 0.77
ii) The relation between numerical aperture and fractional index change is
A) $N A=n_{1} \sqrt{2 \Delta}$
B) $\mathrm{NA}=\Delta \sqrt{2 \mathrm{n}_{1}}$
C) $N A=\Delta n_{1} \sqrt{2 n_{1}}$
D) $N A=2 n_{1} \sqrt{\Delta}$
iii) The variation of critical field H_{c} with temperature T is given by
A) $\mathrm{H}_{\mathrm{c}}=\mathrm{H}_{\mathrm{o}}\left[1-\left(\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c}}}\right)^{2}\right]$
B) $H_{c}=H_{o}\left[1+\left(\frac{T}{T_{c}}\right)^{2}\right]$
C) $\mathrm{H}_{\mathrm{c}}=\mathrm{H}_{\mathrm{o}}\left[1-\left(\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c}}}\right)\right]$
D) $\mathrm{H}_{\mathrm{c}}=\mathrm{H}_{\mathrm{o}}\left[1+\left(\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c}}}\right)\right]$
iv) Superconductors in superconducting state behaves as
A) Ferromagnetic material
B) Diamagnetic materials
C) Dielectric material
D) Monovalent material.
(04 Marks)
b. Discuss the different types of optical fibres with suitble diagrams.
(06 Marks)
c. Define superconductivity and explain Type I and Type II superconductors.
(06 Marks)
d. A step index optical fibre has a core index of 1.46 and the cladding index of 1.409. If the core diameter is $80 \mu \mathrm{~m}$, and the wavelength of light source is $1.2 \mu \mathrm{~m}$, determine the number of modes present in the fibre.
(04 Marks)
7 a. Choose the correct answers for the following :
i) Lead exhibits FCC structure. Each side of the unit cell is of $4.95 \AA$, the radius of a lead atom is
A) $1.75 \AA$
B) $1.57 \AA$
C) $1.075 \AA$
D) $1.057 \AA$
ii) The miller indices of the place parallel to X and Y axes are
A) (100)
B) (010)
C) (001)
D) (111)
iii) The lattice constant of a cubic crystal is given by
A) $a=d_{h k \ell} \sqrt{h^{2}+\mathrm{k}^{2}+\ell^{2}}$
B) $\mathrm{a}=\frac{\mathrm{d}_{\mathrm{hk} \ell}}{\sqrt{\mathrm{h}^{2}+\mathrm{k}^{2}+\ell^{2}}}$
C) $\mathrm{a}=\frac{\sqrt{\mathrm{h}^{2}+\mathrm{k}^{2}+\ell^{2}}}{\mathrm{~d}_{\mathrm{hk} \ell}}$
D) None of these.
iv) The grating space of calcite is $3.036 \AA$. The wavelength of X-rays that undergo first order reflection at a glancing angle of 12° is
A) $1.262 \AA$
B) $1.626 \AA$
C) $1.541 \AA$
D) $1.145 \AA$
(04 Marks)
b. What are miller indices? Explain procedure to find miller indices with an example. ($\mathbf{0 5}$ Marks)
c. Describe how Bragg's X-ray spectrometer is used to determine the wavelength of an X-ray beam.
(06 Marks)
d. Monochromatic X-rays of wavelength $0.82 \AA$ undergo first order Bragg reflection from a crystal of cubic lattice with lattice constant $3 \AA$, at a glancing angle of 7.855°. Indentify the possible planes which give rise to this reflection in terms of their miller indices.
(05 Marks)
8 a. Choose the correct answers for the following :
i) The nanostructure reduced in only one direction is known as
A) quantum dot
B) Quantum wire
C) film
D) Quantum will
ii) The signal due to a reflected wave is called
A) transmitted wave
B) longitudinal wave
C) echo
D) peaco
iii) The elastic behavior of a liquid is characterized by its
A) Young's modulus
B) Bulk modulus
C) Rigidity modulus
D) Poisson's ratio
iv) An acoustic grating can be made by
A) Setting up a standing wave pattern in a liquid using ultrasonic's
B) Subjecting an optical grating to pressure waves of ultrasonic frequency.
C) Drawing lines on a glass plate at equal width
D) It is only a theoretical concept.
(04 Marks)
b. Write a note on nanotechnology.
c. Write a note on fullerene with applications.
(06 Marks)
d. Describe a method of measuring velocity of ultrasonic waves in a liquid.

First/Second Semester B.E. Degree Examination, June/July 2017 Engineering etrystes CMEMISTAY

Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, choosing at least two from each part.

PART - A

1 a. Choose the correct answers for the following :
i) Calomel electrode produces a potential of ± 0.2422 Volt where filled with
A) Sat.ku
B) 1 Nku
C) 1 M ku
D) 0.1 Nku
ii) Voltameter in an electrochemical cell is used to measure
A) Concentration
B) Voltage
C) Current
D) None of these.
iii) Glass electrode cannot be used in the presence of fluoride ions because
A) Alkaline error
B) Loss its activity
C) Glass membrane dissolves
D) None of these
iv) The potential of the standard hydrogen electrode is taken as
A) 1 Volt
B) 0 Volt
C) 10 Volt
D) None of these
(04 Marks)
b. Define single electrode potential. Derive Nerst's equation for single electrode potential
(06 Marks)
c. Define the terms: i) Galvanic cell
ii) Concentration cell
iii) Reference electrode. Give an example each.
d. Calculate the emf of Li-Al cell $\left.\underset{(s)}{\mathrm{Li})} \mathrm{Li}^{+}(0.12 \mathrm{M})| | \mathrm{A}^{3+}(0.15 \mathrm{M})\right|_{(\mathrm{s})} ^{\mathrm{A} \ell}$ at 298 K if the standard reduction potential of lithium electron is -3.05 V and aluminium electrode is -1.66 V .
(04 Marks)
2 a. Choose the correct answers for the following:
i) The electrolyte used in $\mathrm{Li}-\mathrm{MnO}_{2}$ battery is
A) $30 y . \mathrm{H}_{2} \mathrm{SO}_{4}$
B) 60 M KOH
C) Li - halide and organic solvents
D) $\mathrm{NH}_{4} \mathrm{u}+\mathrm{Z}_{\mathrm{n}} \mathrm{u}_{2}$
ii) Which of the following is used in cellular phones?
A) $\mathrm{Zn}-\mathrm{MnO}_{2}$
B) $\mathrm{Zn}-\mathrm{Air}$
C) $\mathrm{Pb}-$ acid
D) $\mathrm{Ni}-\mathrm{MH}$
iii) The electrolyte used in Zn - Air battery
A) aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$
B) aq. KOH
C) Con Ku
D) None of these
iv) Which of the following is a reserve battery?
A) Zn - Air battery
B) $\mathrm{Ni}-\mathrm{MH}$ battery
C) $\mathrm{Zn}-\mathrm{Ag}_{2} \mathrm{O}$
D) $\mathrm{Li}-\mathrm{MnO}_{2}$
(04 Marks)
b. Describe the construction and working of lead acid battery.
c. What are fuel cells? Describe the construction and working of a $\mathrm{H}_{2}-\mathrm{O}_{2}$ fuel cell. (06 Marks)
d. Discuss the battery characteristics:
i) Capacity
ii) Cycle life.
(04 Marks)
3 a. Choose the correct answers for the following :
i) Impressed current method of preventing corrosion is
A) Anodic protection
B) Cathodic Protection
C) Both (A) and (B) D) None of these.
ii) Galvanized nuts and bolts is an example of
A) Cathodic coating
B) Impressed current method
C) Corrosion inhibition
D) Anodic coating.
iii) When the ratio of anodic area to the cathodic area increases, the rate of corrosion.
A) Decreases
B) Increases
C) attains constancy
D) None of these.
iv) Caustic embrittlment is a classic example of
A) Differential aeration corrosion
B) Stress corrosion
C) Differential metal corrosion
D) None of these.
(04 Marks)
b. Define the term corrosion. Explain the electron chemical theory with reference of iron.
(06 Marks)
c. Explain the following types of corrosion i) Pitting corrosion ii) Water line corrosion.
(06 Marks)
d. Explain the following factors influence on the rate of corrosion i) Nature of the corrosion product ii) Hydrogen overvoltage.
(04 Marks)
4 a. Choose the correct answers for the following :
i) Throwing power is higher in the case of
A) Electroplating process
B) Electro less plating process
C) Both (A) and (B)
D) None of these.
ii) Reducing agent used in electro-less plating of copper is
A) EDTA
B) Formaldehyde
C) Sodium Hypophosphite
D) None of these.
iii) Gold plating in printed circuit boards is done using
A) Neural cyanide bath
B) Alkaline cyanide bath
C) Acid cyanide bath
D) None of these.
iv) IN electroplating of chromium the anode used is
A) Chromium
B) $\mathrm{Pb}-\mathrm{Sb}$ alloy
C) Nickel
D) Copper.
(04 Marks)
b. Explain the following factors influencing the rate of electro-deposit
i) Temperature ii) Current density iii) Wetting agent.
(06 Marks)
c. Discuss the process of electroless plating of nickel. Mention its applications
(06 Marks)
d. What is electroplating? Mention any three advantages of electroless plating over electroplating.
(04 Marks)

PART - B

5 a. Choose the correct answers for the following :
i) The chemical name of biodiesel is
A) Monoalkyl fatty ester
B) Fatty acids
C) Triglycerides
D) None of these.
ii) Catalyst used in catalytic converter are
A) Pt, Pd and Rh
B) Ni , lo and Cr
C) $\mathrm{Al}_{2} \mathrm{O}_{3}$ and SiO_{2}
D) None of these.
iii) If the percentage of hydrogen in a fuel is, low its net calorific value is
A) High
B) Low
C) Constant
D) None of these.
iv) Which of the following is not a secondary fuel
A) Natural gas
B) Coal gas
C) Water gas
D) Producer gas
(04 Marks)
b. What is meant by cracking? Describe the fluidized bed catalytic cracking process. (06 Marks)
c. What is PV-cell? Explain the construction and working of PV-Cell. Mention its advantages.
(06 Marks)
d. How much rise in temperature of water occurs when 0.75 g of a fuel is burnt a bomb calorimeter containing 2.5 kg of water. If the gross calorific values of the fuel is $4500 \mathrm{~kJ} / \mathrm{kg}$ and water equivalent of calorimeter is 0.65 kg . Given $\mathrm{S}=4.187 \mathrm{~kJ} / \mathrm{kg} /{ }^{\circ} \mathrm{C}$.
(04 Marks)

6 a. Choose the correct answers for the following :
i) In a filtration of strong acid verses strong base conductivity
A) Increases
B) Decreases
C) Increases and then decreases
D) Decreases and then increases.
ii) Lambert's law states that intensity of monochromatic light decrease exponentially
A) Concentration
B) Path length
C) Time
D) Density.
iii) Flame photometer is based on
A) Atomic absorption
B) Molecular absorption
C) Atomic emission
D) All of above
iv) Gibb's phase rule is applicable to
A) Heterogeneous systems
B) Heterogeneous system in equilibrium
C) Homogeneous system
D) All the above
(04 Marks)
b. Draw the phase diagram for water system, explain and calcualte the number of degree of freedom on a line, in a area and at triple point.
(06 Marks)
c. What are potentiometric filtrations? Discus the application of potentiometry on the estimation of FAS using std $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution.
(06 Marks)
d. Mention the advantages of conductometric filtration.
(04 Marks)
7 a. Choose the correct answers for the following :
i) Which of the following is an adhesive
A) Neoprene
B) Bakelite
C) Plexiglass
D) Araldite
ii) The monomer for neoprene is
A) Isoprene
B) Chloroprene
C) Epichlorophydrin
D) Bisphenol - A.
iii) Kelvar is a
A) Polyurethanes
B) Polycarbonates
C) Polystyrene
D) Polyamide.
iv) Benzoyl peroxide is used as
A) Inhibitor
B) Terminator
C) Propagator
D) Chain transfer agent
(04 Marks)
b. Define glass transition temperature. Explain the following factors affecting Tg. Value.
i) Flexibility
ii) Molecular weight.
(06 Marks)
c. What are conducting polymers? Explain the mechanism of conduction poly acetylene by oxidative doping (P-type).
(06 Marks)
d. How are the following polymers synthesized i) Teflow
ii) PMMA.
(04 Marks)
8 a. Choose the correct answers for the following :
i) Complexing agent for spectrochemical analysis of nitrates
A) SPADNA
B) Ammonia
C) Phenol sulphonic acid
D) Phenol disulphonic acid
ii) A treatment involving the removal of phosphate is
A) Primary
B) Secondary
C) Tertiary
D) None of these.
iii) The indicator used in the determination of chloride content of water sample by Mohr's method.
A) Phenolphthalein
B) Potassium chromatic
C) Starch
D) Ferroiw
iv) Permanent hardness of water is caused due to the presence of
A) Calcium carbonate
B) Calcium chloride
C) Calcium bicarbonate
D) All the above.
(04 Marks)
b. Explain the gravimetric method of determination of suphate content in water.
c. What is desalination? Explain the desalination of water by reverse osmosis. (06 Marks)
d. Explain the activated sludge process.

USN

First/Second Semester B.E. Degree Examination, June/July 2017 Elements of Civil Engineering and Engineering Mechanics

Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, choosing at least two from each part.

PART - A

1 a. Choose the correct answers for the following :
i) Geotechnical Engineering involves the study of \qquad .
A) Air
B) Highway
C) Soil
D) Dams
ii) Bascule bridge is a \qquad bridge.
A) Floating
B) Movable
C) Arch
D) Suspension
iii) Reinforced cement concrete (RCC) comes under
A) Structural Engineering
B) Geotechnical Engineering
C) Transportation Engineering
D) Hydraulics
iv) Kerbs are components of \qquad .
A) Bridges
B) Buildings
C) Dams
D) Roads.
(04 Marks)
b. What are the purposes of dams? List out any four types.
(06 Marks)
c. Explain briefly the scope of civil engineering in the following :
i) Geotechnical engineering ii) Environmental engineering.
(10 Marks)
2 a. Choose the correct answers for the following
i) Effect of force on a body depends on \qquad $-$
A) Direction
B) Position
C) Magnitude
D) All of these.
ii) In a tug of war, two opposing teams are pulling the rope with equal and opposite forces of 1000 N at each end. The tension in the rope is \qquad .
A) 0
B) 1000 N
C) 2000 N
D) $1000 \sqrt{2} \mathrm{~N}$.
iii) In coplanar concurrent force system, if $\sum \mathrm{H}=0$, then the direction of resultant is \qquad .
A) Horizontal
B) Moment
C) Vertical
D) None of these.
iv) The magnitude of the moment is \qquad when a force is applied perpendicular to the lever.
A) Zero
B) Negative
C) Minimum
D) Maximum.
b. State and explain basic principles of idealization in engineering mechanics.
c. Four Coplanar forces acting at a point are as shown in Fig Q2(c) out of which one of the forces in unknown whose magnitude is " F ". If the resultant is 250 N acting along X axis, determine the magnitude of unknown force " F " and its direction " θ ".
(10 Marks)

Fig. Q2(c)
3 a. Choose the correct answers for the following :
i) The method of finding the resultant of a system of forces is called \qquad .
A) Resultant
B) Resolution
C) Composition
D) None.
ii) Varignon's theorem is not applicable for \qquad force system.
A) Coplanar non-concurrent
B) Non-coplanar non-concurrent
C) Concurrent
D) Parallel.
iii) In a coplanar concurrent force system, if $\sum \mathrm{V}=0$, then the resultant is \qquad .
A) Horizontal
B) Vertical
C) Moment
D) None.
iv) If two forces of magnitude $\frac{P}{2}$ act at right angles to each other, then their resultant is \qquad -
A) 2 P
B) $\mathrm{P} \sqrt{2}$
C) $\frac{P}{\sqrt{2}}$
D) $\frac{P}{2}$.
(04 Marks)
b. State and prove the principle of moments.
(08 Marks)
c. Find the resultant and direction of the coplanar force system acting on a body OABC as shown in Fig. Q3(c). Also find the points where the resultant will cut the X and Y axis.

Fig. Q3(c)
(08 Marks)
4 a. Choose the correct answers for the following:
i) The moment of total about the centroidal axis is \qquad .
A) Zero
B) Twice the area
C) Thrice the area
D) None.
ii) The co-ordinates of the centroid of the right angled triangle shown in Fig. Q4(a)(ii) is \qquad .
A) $\left(\frac{b}{3}, \frac{h}{3}\right)$
B) $\left(\frac{2 \mathrm{~b}}{3}, \frac{\mathrm{~h}}{3}\right)$
C) $\left(\frac{\mathrm{b}}{3}, \frac{2 \mathrm{~h}}{3}\right)$
D) $\left(\frac{2 \mathrm{~b}}{3}, \frac{2 \mathrm{~h}}{3}\right)$
iii) If a plane Figure is symmetrical about y-y axis, the centrioid their in \qquad -.
A) X-axis
B) y - y axis
C) Bottom
D) Top.
iv) The centroid of a semicircle of radius R about a centriodal axis parallel to its diametrla axis
A) $\frac{3 R}{4 \pi}$
B) $\frac{3 R}{8 \pi}$
C) $\frac{4 R}{\pi}$
D) $\frac{4 R}{3 \pi}$
(04Marks)
b. Locate the centroid for the shaded area as shown in Fig. Q4(b).

Fig. Q4(a)(ii)

Fig Q4(b)
2 of 4
c. Determine the centroid of the area shown in Fig. Q4(c)

Fig. Q4(c)
(08 Marks)

PART - B

5 a. Choose the correct answers for the following :
i) Lami's theorem is valid for \qquad -
A) Two current forces in equilibrium
B) Four concurrent forces in equilibrium
C) Three concurrent forces in equilibrium
D) None.
ii) A particle is acted upon by two forces of equal magnitude and is in equilibrium. The angle between the two forces is \qquad .
A) Zero
B) 90°
C) 180°
D) 45° (D)
iii) The force which is equal and opposite to the resultant is \qquad
A) Resultant force
B) Force
C) Moment
D) Equilibrant.
iv) In an non-concurrent force system, if $\sum \mathrm{H}=0$ and $\sum \mathrm{V}=0$, then the resultant is \qquad -.
A) Positive force
B) Negative force
C) Moment
D) Zero.
(04 Marks)
b. Find the reaction from the inclined plane and tension in string for the arrangement shown in Fig. Q5(b). Take the weight of the ball as 500 N .
(06 Marks)
c. The system of connected flexible cabler shown in Fig. Q5(c) in supporting loads 100 N and 500 N at B and D respectively. Find the tension in various segments.
(10 Marks)

Fig Q5(c)
6 a. Choose the correct answers for the following :
i) At the fixed end of the cantilever beam, the numbers of unknown reactions are \qquad .
A) 1
B) 2
C) 3
D) 4
ii) The support reaction for statically determinate beams can be determined by applying \qquad -
A) Conditions of static equilibrium
B) Lami's theorem
C) Varignou's principle
D) None.
iii) The portion of the beam extending beyond supports is known as \qquad beam.
A) Propped cantilever
B) Continuous
C) Overhanging
D) Cantilever.
iv) The beam with three or more supports is known as \qquad beam.
A) Cantilever
B) Fixed
C) Propped
D) Continuous.
(04 Marks)
b. Explain the different types of supports and loads on the beam with the help of neat sketch.
(08 Marks)
c. A beam ABCDEF is hinged at A and supported on rollers at E and carries the loads as shown in Fig. Q6(c). Determine the reactions at supports.
(08 Marks)

Fig. Q6(c)
7 a. Choose the correct answers for the following :
i) The frictional force is independent of \qquad .
A) Coefficient of friction
B) Angle of friction
C) Area of contact
D) None.
ii) The coefficient of friction depends on \qquad -
A) Area of contact
B) Shape and surface
C) Strength of surface D) None.
iii) The force of friction developed at the contact surface is always \qquad
A) Parallel to the plane and along the direction of applied force
B) Perpendicular to the plane
C) Parallel to the plane and opposite to the direction of motion
D) All of these.
iv) The angle of friction is the angle between \qquad
A) Inclined and horizontal surface
B) The normal reaction and the frictional force
C) The weight of the body and the frictional force
D) The normal reaction and the resultant.
(04 Marks)
b. State the laws of static and dynamic friction.
(08 Marks)
c. A block weighing 1000 N rests on a plane inclined at 20° to the horizontal. If $\mu=0.25$, find the force required to push the block up the plane when the line of action makes an angle of 30° with the plane as shown in Fig. Q7(c)
(08 Marks)
8 a. Choose the correct answers for the following :
i) The moment inertia is a \qquad .
A) First moment of area
B) Second moment of area
C) Third moment of area
D) None.
ii) The unit of radius of gyration of an area is a \qquad ${ }^{3}$.
A) N / m
B) $\mathrm{N} / \mathrm{m}^{2}$
C) m^{3}
D) m
iii) The moment of inertia of a circle with ' D ' as diameter about its centroidal axis is \qquad -
A) $\frac{\pi \mathrm{D}^{2}}{32}$
B) $\frac{\pi \mathrm{D}^{2}}{64}$
C) $\frac{\pi D^{4}}{32}$
D) $\frac{\pi D^{4}}{64}$
iv) The moment of inertia of a triangular section about base ' b ' and height ' h ' is \qquad .
A) $\frac{b h^{3}}{36}$
B) $\frac{b h^{3}}{12}$
C) $\frac{b h^{3}}{64}$
D) None.
(04 Marks)
b. Derive the expression for moment of inertia of a semicircular lamina of radius ' R ' about centroidal axis parallel to the diameter.
(06 Marks)
c. Determine the moment of inertia about the centroidal axis for a lamina shown in Fig. Q8(c).

First/Second Semester B.E. Degree Examination, June/July 2017 Computer Concepts and C Programming

Time: 3 hrs.
Max. Marks:100

Note: Answer any FIVE full questions, choosing at least TWO from each part.

PART - A

1 a. Choose the correct answers for the following :
(04 Marks)
i) Which of the following device stored instructions that help computer to start up?
A) Joy stick
B) RAM
C) ROM
D) Monitor
ii) Who is called the father of computer?
A) Balise Pascal
B) Charles Babbage
C) Joseph Jacquard
D) Dr. Hewrmán Hollerith
iii) A collection of 8-bits is called
A) Byte
B) Word
C) Record
D) File
iv) A computer resolution is determined by \qquad
C) CPU
D) System unit.
b. With a neat diagram, explain the basic structure of a computer.
(08 Marks)
c. i) Convert the decimal number 512_{10} to binary form
ii) Convert the binary number 100011 to decimal form.

1
(04 Marks)
d Explain two type of monitors based on the technique used to display image and text.
(04 Marks)

2 a. Choose the correct answers for the following :
(04 Marks)
i) The CPU uses a \qquad to store and retrieve each piece of data in the memory
A) Control unit
B) Cache
C) Post
D) Memory location
ii) A magnetic Disk's tracks are divided into smaller parts called
A) Clusters
B) Sectors
C) Bytes
D) Slices
iii) A distributed network configuration in which all data information passes through center computer is
A) BUS Network
B) Star Network
C) Ring Network
D) Point-to-Network
iv) If yopu want to execute more than one program at a time, the system software you must bef capable of
B) Virtual Memory
A) Word processing
D) Multi tasking.
b. What is an operating system? List and explain different types of operating system based on usage and requirement.
(08 Marks)
c. What is OSI model? Explain principle used to develop seven layers of OSI model.
d. Briefly explain the following processors :
i) AMD
ii) IBM.
(04 Marks)

3 a. Choose the correct answers for the following :
(04 Marks)
i) The floweharting symbol diamond shaped box indicates
A) Stat
B) Process Step
C) Decision
D) End
ii) Which of the following are not valid identifiers
A) Stuldent-Name
B) Total
C) Znames
D) int
iii) DOS stafds for
A) Distri最uted operating systems
B) Disk operating systems
C) Drive operating systems
D) Diskless operating systems
iv) Which of the following is an I/P function?
A) Scanf
B) printf
C)puts()
D) putchar().
b. Briefly explain the different functions performed by the operating systems.
(04 Marks)
c. What is the need of network topology? Explain the following different networking topologies:
i) Bus Topology
ii) Star Topology
iii) Ring Topology
iv) Mesh Topology.
(08 Marks)
d. What is variable? Explain variable initialization.
(04 Marks)
a. Choose the correct answers for the following :
(04 Marks)
i) The step by step procedure to solve a particular problem is called
A) Flowchart
B) Program
C) Instruction
D) Algorithms
ii) Which of the following is not a valid assignment expression?
A) $X=23$
B) $4 X=8=3$
C) $\mathrm{Y} \%=5$
D) $x=r=5$
iii) An infinte loop in a program sequences, causes no output but creates crror, what type error is it?
A) Syptax Error
B) Logical Error
C) Run-Time Error
D) None of these
iv) Which of the following has highest precedence?
A) Pre fix increment
B) Multiply
C) Modulus
D) Assignment.
b. Explain the fllowing operators, with example :
i) Relational operator ii) Increment operator iii) Conditional operator iv) Special operators.
c. Write a flow hart to generate prime numbers between the limit (08 Marks)
d. What is the falue of x ? If $a=100, b=150$ and $x=(a>b) ? a: b$;.
(02 Marks)

5 a. Choose the correct answers for the following:
(04 Marks)
i) To read a single character, which of the following equation is used
A) putchar()
B) getchar()
C) getch()
D) putch()
ii) A function that calls itself for its processing is known as
A) Inline Function
B) Nested Function
C) Over loaded Function
D) Recursive Function
iii) Arguments of a function are separated with
A) comma (,
B) semicolon(;)
C) colon(:)
D) None of these
iv) Which operator has the highest procedures
A) +
B) *
C) ++
D) \gg
b. What is difference between IF-ELSE and Switch statement?
(04 Marks)
c. Explain with an example the different ways of passing parameter to function.
(08 Marks)
d. Write a C program to find the largest of their integers with appropriate message.
(04 Marks)

10ELE15/25

First/Second Semester B.E. Degree Examination, June/July 2017 Basic Electrical Engineering

Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each Part.

PART - A
1 a. Choose the correct answers for the following :
(04 Marks)
i) As per ohms law
A) $\mathrm{V} \propto \mathrm{I}$
B) $V \propto R$
C) $I \propto R$
D) $V=I R$
ii) Which of the following is true both for a series and parallel circuit
A) Resistances are additive
B) Currents are additives
C) Voltage drops are additive
D) Powers are additives
iii) Inductance opposes \qquad in current in a circuit
A) Only increases
B) Only decreases
C) Change
D) None of these
iv) A wire of resistance R is stretched to doubled its length the new resistance of the wire is
A) $R / 2$
B) $2 R$
C) $4 R$
D) $\mathrm{R} / 4$.
b. State and explain Kirchhoff's laws.
(06 Marks)
c. Define co-efficient of coupling and obtain the relation between self inductances, mutual inductance and co-efficient of coupling.
(04 Marks)
d. Two identical coils of 1200 turns each, are placed side by side such that, 60% of flux produced by one coil links the other. A current of 10 A in the first coil, sets up a flux of 0.12 mwb . If the current in the first coil changes from +10 A to -10 A in 20 m sec .

Find: i) The self inductance of coils
ii) The EMF's induced in both coils.
(06 Marks)
2 a. Choose the correct answers for the following :
(04 Marks)
i) An AC voltage is given by $100 \sin 314 \mathrm{t}$. The frequency is
A) 50 Hz
B) 75 Hz
C) 25 Hz
D) 100 Hz
ii) An alternating current is given by $\mathrm{i}=20 \sin 314 \mathrm{t}$ and the time taken to complete 10 cycles is
A) 0.02 S
B) 0.2 S
C) 2 S
D) 0.1 S
iii) The phase difference between V and I for the series $\mathrm{R}-\mathrm{L}$ circuit \qquad as X_{L} increases
A) Decreases
B) Remains constant
C) Increases
D) None of these
iv) The voltage and current in AC circuit are given by $\mathrm{V}=50 \cos \omega \mathrm{t}$ and $\mathrm{i}=5 \sin \omega \mathrm{t}$. The power consumed by the circuits.
A) 0 Watts
B) 250 Watts
C) 100 Watts
D) 50 Watts.
b. Define average and RMS value of all alternating current and find their relation with maximum value, if the alternating quality is sinusoidal.
(08 Marks)
c. A circuit consists of a resistance of 10Ω, an inductance of 16 mH and a capacitance of $150 \mu \mathrm{~F}$ connected in series. A supply of 100 V at 50 Hz is given to the circuit. Find the current, power factor and power consumed by the circuit. Draw the vector diagram.
(08 Marks)
i) In a 3-phase system, the emf's are \qquad
A) 30° apart
B) 60° apart
C) 90° apart
D) 120° apart
ii) When the two watt meters used to measure a 3 -phase power, give equal readings then the power factor of the circuit is
A) 0.5
B) 0
C) 0.866
D) 1
iii) Active power drawn by a 3-phase balanced load is given by
A) $P=V_{L} I_{L} \cos \phi$
B) $P=\sqrt{3} V_{L} I_{L}$
C) $\mathrm{P}=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \phi$
D) $\mathrm{P}=\sqrt{3} V_{\mathrm{Ph}} \mathrm{I}_{\mathrm{ph}} \cos \phi$
iv) The resistance between any two terminals of a balanced delta connected load is 20Ω. A resistance of each phase is \qquad
A) 20Ω
B) 30Ω
C) 10Ω
D) 60Ω
b. With the aid of a phasor diagram obtain the relationship between the line and phase values of voltages in a three-phase, star connected.
(06 Marks)
c. Show that two Watt meters are sufficient to measure 3ϕ power for balanced 3ϕ power system.
(06 Marks)
d. Three coils each having a resistance of 10Ω and an inductance of 0.02 H are connected in star across $440 \mathrm{~V}, 50 \mathrm{~Hz}$, 3-phase supply. Calculate the line current and total power consumed.
(04 Marks)
4 a. Choose the correct answers for the following :
(04 Marks)
i) The dyanometer type Watt meters is used to measure
A) Only DC power
B) Only AC power
C) Both DC and AC power
D) None of these
ii) The unit of electrical is equivalent
A) $3600 \mathrm{w}-\mathrm{s}$
B) $3.6 \mathrm{kw}-\mathrm{s}$
C) 1 KWH
D) 100 WH
iii) The rotating disc of the energy meter is made of \qquad -
D) Silver
iv) In an induction type energy meter, the breaking torque is directly proportional to \qquad
A) Deflecting torque
B) Controlling torque
C) Speed of the disc
D) Damping torque.
b. With the help of a neat diagram, describe the constructional features and working of a dynamometer type Watt meter.
(06 Marks)
c. Name different types of domestic wiring and explain any one type of wiring. ($\mathbf{0 4}$ Marks)
d. What is the necessity of earthing? With a neat diagram, explain the pipe earthing. (06 Marks)

PART - B

5 a. Choose the correct answers for the following :
(04 Marks)
i) In a wave - winding, the number of parallel paths is equal to \qquad
A) $\mathrm{P} / 2$
B) 2
C) P
D) 2 P
ii) A 4-pole wave connected generator has a useful flux of 0.02 . Weber and generates a voltage of 288 V at 1200 rpm the number of conductors in the armature are
A) 180
B) 360
C) 720
D) 90
iii) High voltage Dc generators uses \qquad winding
A) Lap
B) Wave
C) Either A or B
D) None of these
iv) A commutator is made up of \qquad
A) Iron
B) Copper segments
C) Both A and B
D) None of these.
b. Derive an expression for armature torque in a DC motor.
c. The field current in a DC shunt machine is 2 A and the line current is 20 A at 200 V . Calculate: i) The generated EMF. When working as generator ii) Torque in $\mathrm{N}-\mathrm{m}$ when running at 1500 rpm as motor. Take the armature resistance as 0.5Ω.
d. What is back emf in a Dc motor? What is its significance?
(05 Marks)

6 a. Choose the correct answers for the following :
(04 Marks)
i) When the supply frequency of a transformer is doubled then the hysteresis loses
A) Remains same
B) Doubled
C) Reduced by 50%
D) Hysteresis is equal to Eddy current loss
ii) The losses which donot occur in transformer are
A) copper losses
B) magnetic losses
C) Friction losses
D) none of these
iii) A transformer transfers electrical energy from primary to secondary usually with a change in
A) Frequency
B) Power
C) Voltage
D) Time period
iv) The core of the transformer is laminated to reduce
A) Eddy current loss
B) Hysteres is loss
C) Copper loss
D) Friction loss.
b. Derive an Emf equation of transformer.
(05 Marks)
c. A 600 KVA transformer has a efficiency of 92% at full load, unity power factor and at half load, 0.9 power factor. Determine its efficiency at 75% of full load and 0.9 power factor.
(06 Marks)
d. What are the various types of losses and how to overcome these losses in a transformer?

7 a. Choose the correct answers for the following :
(04 Marks)
i) The disadvantages of a short pitched coils in an alternator is that
A) Harmonics are introduced
B) Waveform become non-sinusoidal
C) Voltage round the coil is reduced
D) None of the above
ii) An 8-pole alternator runs at 600 rpm . The frequency of the induced Emf is \qquad
A) 40 Hz
B) 50 Hz
C) 60 Hz
D) 75 Hz
iii) In an alternator, the number of slots per pole per phase is 4 and the slot angle is 15°. The distribution factor is
A) 0.945
B) 0.966
C) 0.956
D) 0.987
iv) An alternator generates a no load line voltage of 11 KV . The full load terminal voltage is 10.6 KV . The voltage regulation is.
A) 5%
B) 6%
C) 4%
D) 3.77%.
b. Derive an expression for Emf equation of an alternator. What is the necessity of considering pitch factor and distribution factor for Emf equation?
(08 Marks)
c. A 12 pole, 500 rpm , star connected alternator has 60 slots, with 20 concoctors per slot. The flux per pole is 0.02 wb and is distributed sinusoidally. The winding factor is 0.97 . Calculate: i) frequency ii) phase Emf iii) Line Emf.
(08 Marks)
8 a. Choose the correct answers for the following :
(04 Marks)
i) When the rotor of 3ϕ induction motor is blocked, the slipis \qquad
A) 0
B) 0.5
C) 0.1
D) 1
ii) The direction of rotation of 3ϕ induction motor depends on \qquad
A) supply voltage
B) Number of poles
C) The supply frequency
D) The phase sequence of the supply
iii) A 4 pole, 50 Hz induction motor has a slip of 4%. The frequency of the rotor current is
A) 2.5 Hz
B) 2 Hz
C) 3 Hz
D) 4 Hz
iv) Three phase wound rotor induction motors are also called as \qquad motors
A) synchronous
B) Series
C) Commutator
D) Slip ring.
b. Mention the advantages and disadvantages of squirrel cage and slip ring induction motors. (03 Marks)
c. Explain why a starter is required for a 3-申 induction motor. With a circuit diagram explain the working of a star-delta starter for a 3- ϕ induction motor.
(08 Marks)
d. A 3-ф induction motor has 6 poles and runs at 940 rpm on full load. It is supplied from an alternator having 4 poles and running at 1500 rpm , Calculate the full load slip and the frequency of the rotor currents of the induction motor.
(05 Marks)

10ELN/15/25
First/Second Semester B.E. Degree Examination, June/July 2017 Basic Electronics
Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, choosing at least two from each part.
PART - A

1 a. Choose the correct answers for the following :
i) The cut in voltage of a silicon diode is about \qquad
D) 1.2 mV
A) 0.6 V
B) 0.6 mV
C) 1.2 V
ii) The ripple factor for a full wave rectifier is
A) 0.482
B) 0.5
C) 1.21
D) -1.21
iii) PIV rating of a diode in a bridge rectifier is \qquad
A) V_{m}
B) $2 \mathrm{~V}_{\mathrm{m}}$
C) $\frac{V_{m}}{2}$
D) $\frac{V_{m}}{\sqrt{2}}$
iv) The zener resistance of a zener diode, which exhibits 50 mV change in V_{z} for a 2.5 mA change in I_{z} is \qquad
A) 10Ω
B) 40Ω
C) 20Ω
D) $60 \Omega \quad(04 \mathrm{Marks})$
b. Draw and explain the V-I characteristics of silicon diode (04 Marks)
c. Deduce the following for Fullwave rectifier i) $I_{d c}$
ii) $I_{\text {rms }}$
iii) Ripple factor
(08 Marks)
d. A full wave rectifier (bridge) supplies a load of 400Ω in parallel with a capacitor of $500 \mu \mathrm{~F}$. If the ac-supply voltage is $230 \sin 314 \mathrm{t}$, V find the i) Ripple factor ii) Dc load current.
(04 Marks)
2 a. Choose the correct answers for the following :
i) The transistor acts as an amplifier in the \qquad region.
A) cut off
B) active
C) saturation
D) inverse.
ii) In a transistor the current conduction is due to \qquad carriers.
A) Majority
B) Minority
C) Both
D) None of these.
iii) The input resistance is highest for \qquad
A) CB amplifier
B) CC amplifier
C) CE amplifier
D) None of these.
iv) The position of Q-point on the dc load line should be \qquad
A) stable
B) unstable
C) bistable
D) all the above.
(04 Marks)
b. Draw input and output characteristics of a transistors in common emitter configuration and explain in detail.
(04 Marks)
c. Obtain the relationship between α_{dc} and β_{dc}.
(08 Marks)
d. Calculate the values of $\mathrm{I}_{\mathrm{c}}, \mathrm{I}_{\mathrm{E}}$ and β_{dc} for a transistor with $\alpha_{\mathrm{dc}}=0.98$ and $\mathrm{I}_{\mathrm{B}}=120 \mu \mathrm{~A}$.
(04 Marks)
3 a. Choose the correct answers for the following :
i) The reverse saturation current doubles for every \qquad ${ }^{\circ} \mathrm{C}$ rise in temperature.
A) 40
B) 45
C) 10
D) 50 .
ii) The stability factor " S " as the rate of change of collector current with \qquad
A) Base current
B) Reverse saturation current
C) Emitter current
D) V_{cc}.
iii) For an emitter follower, the voltage gain is \qquad
A) unity
B) greater than unity
C) less than unity
D) zero.
iv) In the fixed bias circuit, the stabilization of the Q-point is \qquad .
A) very poor
B) very high
C) better
D) very good.
(04 Marks)
b. Explain the circuit operation and analysis of voltage divider bias.
(08 Marks)
c. In the circuit shown in Fig. Q3(c), a NPN transistor with $\beta=100$ is used. Find I_{B}, I_{C} and V_{CE}. Draw the de load line and indicate the Q -point. Take $\mathrm{V}_{\mathrm{BE}}=0.7$ volts.
(08 Marks)

Fig. Q3(c)
4 a. Choose the correct answers for the following :
i) An SCR has \qquad number of $\mathrm{p}-\mathrm{n}$ junctions
A) One
B) Two
C) Three
D) Four
ii) FET is a \qquad controlled device.
A) Voltage
B) Current
C) Power
D) None of these.
iii) The holding current is an SCR is \qquad the latching current.
A) More than
B) Less than
C) Equal to
D) none of these
iv) A relaxation uses
A) MOSFET
B) SCR
C) UJT
D) BJT
(04 Marks)
b. Draw and explain the V-I characteristic of SCR.
c. Explain the basic construction and equivalent circuit of UJT.
PART - B

5 a. Choose the correct answers for the following :
i) Bandwidth of an amplifer is given by \qquad
A) $B W=f_{L}-f_{H}$
B) $\mathrm{BW}=\mathrm{f}_{\mathrm{H}}-\mathrm{f}_{\mathrm{L}}$
C) $B W=f_{L}+f_{H}$
D) $\mathrm{BW}=2 \mathrm{f}_{\mathrm{L}}-\mathrm{f}_{\mathrm{H}}$
ii) An amplifier is RC phase shift oscillator contributes \qquad phase shift.
A) 180°
B) 0°
C) 90°
D) 60°.
iii) The crystal oscillator finds use, when the \qquad stability is required.
A) Amplitude
B) Frequency
C) Phase
D) None of these.
iv) In an oscillator, we use \qquad feedback.
A) Positive
B) Negative
C) Unity grain
D) None of these.
(04 Marks)
b. Draw a neat circuit diagram of Hartley's oscillator and explain its working. What is the frequency of oscillations?
(08 Marks)
c. With a neat circuit diagram and frequency response, explain the operation of single stage RC coupled amplifier.
(08 Marks)
6 a. Choose the correct answers for the following :
i) An audio amplifier works over the frequency range \qquad .
A) 20 Hz to 20 KHz
B) 20 Hz to 1 MHz
C) 1 KHz to 4 KHz
D) None of these.
ii) Op-amp is basically a \qquad amplifier.
A) Power
B) Differential
C) Optical
D) Current.
iii) In inverting amplifier there is \qquad phase shift between input and output.
A) 0°
B) 90°
C) 180°
D) 360°
iv) The maximum rate at which amplifier output can change in volts per microseconds ($\mathrm{V} / \mathrm{\mu s}$) is called \qquad .
A) over rate
B) slew rate
C) under rate
D) None of these.
b. List the characteristics of an ideal op.amp.
c. Show with a circuit diagram, how the op-amp can be used as an integrator.
d. Find the O / pP voltage of the $3 \mathrm{i} / \mathrm{p}$ adder circuit shown below Fig. Q6(d).

Fig. Q6(d)
7 a. Choose the correct answers for the following :
i) The radio communication uses \qquad as communication medium.
A) Optical fibre
B) Free space
C) conducting wire
D) None of these.
ii) The circuit that recovers the original modulating information from an AM signal is known as
A) Modulator
B) Mixer
C) Demodulator
D) Oscillator.
iii) 2's complement of binary number 10110 as
A) 00011
B) 01010
C) 11100
D) 11111 .
iv) $(28)_{10}=()_{2}$
A) 11100
B) 01110
C) 11000
D) 00011 .
(04 Marks)
(04 Marks)
b. Explain the need for modulation.
c. Draw the block diagram of a super heterodyne receiver and explain the function of each block.
(06 Marks)
d. Perform the following :
i) Convert $(725.25)_{8}=()_{10}=(\quad)_{2}$
ii) Subtract using 2's complement (4-9) io $_{10}$
iii) $(11010.101)_{2}=(\quad)_{8}=()_{16}$.
(06 Marks)
8 a. Choose the correct answers for the following :
i) Universal gates are \qquad and \qquad .
A) NOT and NOR
B) AND or OR C) NAND and NOR
D) EX-OR and EX-NOR.
ii) $(\mathrm{A}+\mathrm{B})(\mathrm{B}+\mathrm{C})=$ \qquad
A) $B+\bar{A} C$
B) $\mathrm{B}+\overline{\mathrm{B}} \mathrm{C}$
C) $\mathrm{B}+\mathrm{AC}$
D) AB .
iii) The output is high, when all the inputs are low, such a gate is called \qquad - ${ }^{\text {R }}$
iv) Full adder has \qquad
B) AND
C) OR
D) EX-OR
A) 1
B) 2
C) 3
D) 4 .
(04 Marks)
b. State and prove De Morgan's theorem.
c. Simplify
i) $\bar{A} \bar{B} \bar{C}+\bar{A} B \bar{C}+A \bar{B} \bar{C}+A \bar{B} \bar{C}$, realize using basic gates.
ii) $(\mathrm{A}+\overline{\mathrm{B}}+\mathrm{C})(\overline{\mathrm{A}}+\mathrm{B}+\mathrm{C})$, realize using two input NAND gates.
(08 Marks)
d. Realize a full adder using 2 Half adder and OR gate.

USN

First/Second Semester B.E Degree Examination, June/July 2017 Constitution of India and Professional Ethics

(COMMON TO ALL BRANCHES)

Time: 2 hrs.]
[Max. Marks: 50

INSTRUCTIONS TO THE CANDIDATES

1. Answer all the fifty questions, each question carries ONE mark.
2. Use only Black ball point pen for writing / darkening the circles.
3. For each question, after selecting your answer, darken the appropriate circle corresponding to the same question number on the OMR sheet.
4. Darkening two circles for the same question makes the answer invalid.
5. Damaging/overwriting, using whiteners on the OMR sheets are strictly prohibited.
6. The president of the constituent assembly was
a) Dr. K.M. Munshi
b) Jawaharlal Nehru
c) Dr. B.R. Ambedkar
d) De. Rajendra Prasad
7. The Indian Constitution borrowed the scheme of Indian Federation from the constitution of
a) U.K
b) Canada
c) Ireland
d) U.S.A
8. How many schedules are there in the Indian Constitution?
a) 11
b) 12
c) 13
d) 15
9. Who gave the constitution to us?
a) People of India
b) The British Queen
c) The Governor General of India
d) None of these
10. The concept of Welfare state is found in the Indian Constitution in the
a) Fundamental duties
b) Preamble
c) Directive principles
d) Fundamental rights
11. Rights to freedom guarantees
a) 5 rights
b) 6 rights
c) 7 rights
d) 8 rights
12. For the enforcement of fundamental rights, the supreme court may issue
a) A writ
b) A decree
c) An ordinance
d) A notification
13. Which one of the following is not a fundamental duty?
a) Abide by the constitution and respect its ideals
b) Vote in public elections
c) Develop the scientific temper
d) Safeguard public property and abjure violence

10CIP18/28

9. Which one has become a legal right under $44^{\text {th }}$ Constitution Amendment Act, 1978?
a) Right to property
b) Right to education
c) Right to work
d) Right to judicial remedies
10. When fundamental rights of a person are violated, he can appeal to the
a) President
b) Prime Minister
c) Chief Minister of the state
d) None of them
11. The Panchayat Raj Institutions in India are established as per the constitutional directions of the
a) federalism
b) directive principles of state policy
c) preamble
d) fundamental rights
12. Which of the following exercised the most profound influence in framing the Indian Constitution?
a) British Constitution
b) U.S. Constitution
c) Irish Constitution
d) The Government of India Act, 1935.
13. Constitution of India was enacted by the Constituent Assembly on
a) $26^{\text {th }}$ January 1950
b) $26^{\text {th }}$ November 1949
c) $26^{\text {th }}$ September 1948
d) $20^{\text {th }}$ December 1949
14. Indian Independence Act was passed by the British Parliament on:
a) $18^{\text {th }}$ July 1947
b) $20^{\text {th }}$ July 1947
c) $14^{\text {th }}$ August 1947
d) $20^{\text {th }}$ July 1946
15. Joint Parliamentary sessions are chaired by
a) Prime Minister
b) President
c) Speaker and Lok Sabha
d) Chairman of Rajya Sabha
16. Attorney General of India is appointed by the
a) Parliament
b) President
c) Union Law Minister
d) Chief Justice of India
17. Which of the following bills must be passed by each house of the Parliament separately by special $2 / 3^{\text {rd }}$ majority?
a) Finance bill
b) Ordinary bill
c) Money bill
d) Constitution Amendment bill
18. Supreme court of India has interpreted constitutional right to education as
a) Right to life
b) Right to equality
c) Right to employment
d) Fundamental right
19. Who is the supreme commander of armed forces in India?
a) Home Minister
b) Defense Minister
c) President
d) Prime Minister
20. Two persons are nominated by the President to be the members of Lok Sabha to represent the
a) Parsees
b) Anglo-Indians
c) Buddhists
d) Indian-Christians
21. All the Union Council of Ministers are appointed by the
a) President
b) Prime Minister
c) Lok Sabha speaker
d) vice-President
22. The executive head of the State Government is
a) Chief Justice of the High Court
b) The Chief Minister
c) The Governor
d) The Prime Minister
23. In the Union Government the Council of Ministers is collectively responsible to the
a) President
b) Prime Minister
c) Lok Sabha
d) Parliament
24. Who has the authority to approve President's Rule in the state?
a) Parliament
b) Lok Sabha
c) Prime Minister
d) State Legislature
25. Who is the leader of Lok Sabha?
a) President
b) Vice President
c) Speaker of Lok Sabha
d) Prime Minister
26. Rajya Sabha shall consist of not more than
a) 150 members
b) 200 members
c) 250 members
d) 275 members
27. In India, political parties are given recognition by the
a) President
b) Law Commission
c) Election Commission
d) Parliament
28. After declaration of financial emergency by the President, what is the period of operation without approval by the parliament?
a) three months
b) four months
c) two months
d) one month
29. The judiciary in India is
a) under the prime minister
b) under the president
c) under the parliament
d) independent
30. Who among the following appoints Judges of the Supreme Court and High Courts?
a) Prime Minister
b) Union Law Minister
c) President
d) Parliament
31. Which constitutional organ has the power to amend the constitution of India?
a) Judiciary
b) Executive
c) Legislative
d) Parliament
32. Which fundamental rights article is enforceable even during the period of National Emergency?
a) Art. 19
b) Art. 20
c) Art. 21
d) b and c
33. Who appoints the Chief Election Commissioner?
a) President
b) Prime Minister
c) Chief Justice of India
d) Speaker of Lok Sabha
34. The fundamental duties of Indian citizens were incorporated in the constitution in the year.
a) 1976
b) 1978
c) 1952
d) 1954
35. Which among the following directive principles of state policy that has not been implemented so far?
a) Separation of judiciary from the executive
b) Organization of village Panchayats
c) Uniform civil code
d) Maternity relief to working women.
36. The total members in the state legislative council should not be less than
a) 100
b) 80
c) 40
d) 30
37. The directive principles of state policy are
a) political rights
b) social rights
c) legal rights
d) constitutional rights

10CIP18/28

38. Governor will not act without the aid and advise of the council of ministers while
a) Dismissing a Chief Minister
b) Appointing a cabinet minister
c) Dissolving the legislative assembly
d) Recommending president's rule
39. Reservations in promotion in Government jobs may be made in favour of
a) Muslims
b) Socially and educationally backward class people
c) Widows
d) Scheduled castes
40. Seats for scheduled castes and scheduled tribes are not reserved in
a) Rajya Sabha
b) Lok Sabha
c) State legislative assembly
d) All of these
41. The obligations and prerogatives associated with a specific role is referred to as
a) ethics
b) responsibility
c) duty
d) role morality
42. Engineering profession is considered to be like a building, its foundation is
a) hard and sincere work
b) honesty
c) expert engineering knowledge and skill
d) sound common sense and expert knowledge
43. As applied to responsibility, avoiding blame or being safe is the prime concern in
a) minimalist model
b) reasonable care model
c) good works model
d) a and b
44. This is not the symptom of group thinking
a) mind guarding
b) self-censorship
c) microscopic vision
d) illusion of unanimity
45. Egocentric tendencies means
a) superiority complex
b) interpreting situation from limited view
c) arrogant and irresponsible behaviour
d) habit of criticizing the views of others
46. Revealing confidential information amounts to
a) breach of contract
b) criminal breach of trust
c) violation of patent right
d) misusing the truth
47. Conflict of interest exists for an engineer when he is subject to
a) professional impediments'
b) threat
c) loyalties
d) professional harassments
48. The patent holder does not allow others to use patented information for \qquad years from the date of filing.
a) 25
b) 20
c) 15
d) 50
49. The formulae of "PEPSI COLA" is an example of
a) trade secret
b) patent
c) copy right
d) trade marks
50. An expert testimony does not demand
a) adequate time for a thorough investigation
b) consulting extensively with the lawyer
c) expert legal knowledge
d) objective and unbiased demeanor.

First/Second Semester B.E Degree Examination, June /July 2017
Environmental Studies
(COMMON TO ALL BRANCHES)
Time: 2 hrs.]
[Max. Marks: 50

INSTRUCTIONS TO THE CANDIDATES

1. Answer all the fifty questions, each question carries ONE mark.
2. Use only Black ball point pen for writing / darkening the circles.
3. For each question, after selecting your answer, darken the appropriate circle corresponding to the same question number on the OMR sheet.
4. Darkening two circles for the same question makes the answer invalid.
5. Damaging/overwriting, using whiteners on the OMR sheets are strictly prohibited.
6. The Earth is surrounded by a blanket of air which is reffered to as
a) Atmosphere
b) Biosphere
c) Hydrosphere
d) Lithosphere
7. The term Biosphere was coined by scientist from
a) Romania
b) Russia
c) Spain
d) Sweden
8. The mantle supporting lithosphere is known as
a) Asthenosphere
b) Mantle
c) Magma
d) Lava
9. The by - product in Autotrophs is
a) Carbon
b) Oxygen
c) Nitrogen
d) Hydrogen
10. Fungi and Bacteria are
a) Producers
b) Hyterotrophs
c) Consumers
d) Decomposers
11. Transpiration by plants is affected by
a) Temperature
b) Pressure
c) Humidity
d) Gravity
12. The process leading to soil depletion in situ is known as
a) Soil degradation
b) Soil erosion
c) Urbanization
d) None
13. Aggregation of clay into sand - sized grains is by
a) Vegetation
b) Wild fire
c) Conservation
d) Overgrazing
14. Removal of trees cause
a) Loss of biodiversity
b) Ecological impact
c) Soil erosion
d) All of these
15. Consumption of fossil fuels result in
a) Ozone depletion
b) Global warming
c) both
d) None of the above
16. Marine Iguanas were killed due to oil spill at
a) Santa Fe
b) Andaman
c) Nicobar
d) Lakshadweep
17. Arsenic, Fluorides, Phosphates emit from
a) Diary plants
b) Distillery unit
c) Fertilizer plant
d) Tanneries
18. Mercaptanes is a gaseous effluent characteristic of
a) Tanneries
b) Chemical industry
c) Petrochemicals
d) All of these
19. As per IS : $10500-2003$, maximum limit of turbidity is
a) 5 NTU
b) 10 NTU
c) 15 NTU
d) 20 NTU
20. Typhoid is a disease due to presence of
a) Bacteria
b) Fungus
c) Virus
d) All
21. Water borne diseases include
a) Polio
b) Meningitis
c) Cholera
d) All
22. Raw sewage used as fertilizer resulted in cholera at
a) Palestine
b) Peru
c) Paraguay
d) Panama
23. Mathaemoglobinemia is a syndrome due to excess of
a) Nitrates
b) Phosphates
c) Chlorides
d) Sulphates
24. Limestone reefs are built up by
a) Corals
b) Algae
c) Both
d) None of these
25. Coal is a dirty fuel because it emits
a) CO_{2}
b) SO_{2}
c) NO_{2}
d) All
26. Wet gas contains low amounts of
a) Propane
b) Pentane
c) Methane
d) Hexane
27. Chemical added to detect any leakage of LPG is
a) Trihydrothiophe
b) Trinitrothiophene
c) Tritrohythiophene
d) Tritronitrothiophene
28. Huge radioactive fallout on life across Europe is due to nuclear disaster at
a) Cambodia
b) Cameroon
c) Chernobyl
d) Cape Town
29. Nuclear power plant in Karnataka is Situated in
a) Karwar
b) Kaiga
c) Kudremukh
d) None
30. Tidal energy schemes in India is being experimented in
a) Mumbai
b) Kerala
c) Tamilnadu
d) Orissa
31. Coal mines result in enhancing hardness of water due to emission of
a) Sulphuric acid
b) Nitric acid
c) Phosphoric acid
d) All
32. Accelerated Algae and water plant growth is
a) Putrefaction
b) Eutrophication
c) Denitrification
d) None
33. Silting is encouraged due to photosynthesis of
a) Algae
b) Bacteria
c) Corals
d) Planktons
34. The word soil is derived from
a) English
b) French
c) Latin
d) Italian
35. Source of soil pollution is due to
a) Mining
b) Biological agents
c) Urban wastes
d) All of these
36. Common viruses present in sewage are
a) Adeno viruses
b) Anterioviruses
c) Glutoviruses
d) All of these
37. Process in which MSW is decomposed is known as
a) Sanitary landfill
b) Composting
c) Incineration
d) None
38. Progress of a nation depends on
a) Population density
b) Literacy rates
c) Family size
d) All of these
39. Country not belonging to G7 is
a) Canada
b) Britain
c) Cambodia
d) Germany
40. Population growth is not the cause of poverty according to
a) Karl Marx
b) Napoleon
c) Nelson Mandela
d) Lincoln
41. Key remedy for fast population growth happens to be
a) Prosperity
b) Nutrition
c) Social security
d) All these
42. Major Green House Gas is
a) CO_{2}
b) CH_{4}
c) CFC
d) O_{3}
43. Kyoto protocol was opened for signature on
a) February 16,1998
b) March 16, 1998
c) April 16, 1998
d) May 16, 1998
44. 'Acid Rain' was coined by
a) Albert Rogers
b) Albert Agnus
c) Robert Angus
d) Alfred Rogers
45. Acid rain can be
a) Dry
b) Wet
c) Both
d) None of these
46. Lowest P^{H} recorded in rainwater is
a) 1.5
b) 2.5
c) 3.5
d) 4.5
47. Primary cause of acid rain is due to presence of
a) SO_{2}
b) CO_{2}
c) NO_{2}
d) $\mathrm{P}_{2} \mathrm{O}_{5}$
48. Invaluable stone statues are partially dissolved by acid rain in
a) Sweden
b) Greece
c) Ukraine
d) Uganda
49. Acid rain has become an invisible threat particularly in
a) Turkey
b) Tuvalu
c) Japan
d) Jordan
50. U.N. conference on Human Environment held in
a) Manchester
b) Glasgow
c) Stockholm
d) Liverpool
51. Air Act extends to
a) North India
b) South Central India
c) Whole of India
d) Includes Pakistan
52. Water Act in the first instance applies to
a) Tamilnadu
b) Andhra Pradesh
c) Karnataka
d) Maharashtra
53. Wild Life Act extends in India except
a) Karnataka
b) Kerala
c) Kashmir
d) Assam
54. On $29^{\text {th }}$ April 1999 , NGO's are signified by UN
a) President
b) Secretary General
c) Chief
d) All
55. Guiding principles for Environmental Education were formulated at conference held in
a) New York
b) Tbilisi
c) Los Angeles
d) Brimingham

Second Semester B.E. Degree Examination, June/July 2017 Engineering Mathematics - II

Time: 3 hrs.

Note: 1. Answer any FIVE full questions, choosing at least two from each part.
2. Answer all objective type questions on any single page of the answer booklet.

PART - A

1 a. Choose the correct answers for the following:
i) Solution of one of the factors of $p^{2}-p-1=0$ with $p=\frac{d y}{d x}$ is $y=$ \qquad -
A) $\left(\frac{1+\sqrt{5}}{2}\right) \mathrm{x}^{4}+\mathrm{C}$,
B) $\left(\frac{2+\sqrt{5}}{2}\right) \mathrm{x}^{3}+C$
C) $\left(\frac{2-\sqrt{5}}{2}\right) x^{2}+C$
D) $\left(\frac{1-\sqrt{5}}{2}\right) x+C$
ii) On solving for x in $\mathrm{P}=\tan \left(\mathrm{x}-\frac{\mathrm{P}}{1+\mathrm{P}^{2}}\right)$ the solution for $\mathrm{y}=$ \qquad $-$
A) $\mathrm{C}+\frac{1}{1+\mathrm{P}^{2}}$
B) $\mathrm{C}-\frac{2}{1+\mathrm{P}^{2}}$
C) $\mathrm{C}-\frac{3}{1+\mathrm{P}^{2}}$
D) $\mathrm{C}-\frac{1}{1+\mathrm{P}^{2}}$
iii) The solution for Clairut's form of the differential equation, $(y-P x)(P-1)=P$ is $y=$ \qquad
A) $\mathrm{Cx}-\frac{\mathrm{C}}{\mathrm{C}-1}$
B) $\mathrm{Cx}+\frac{\mathrm{C}}{\mathrm{C}-1}$
C) $C^{2}-\frac{C x}{C-1}$
D) $\mathrm{C}^{2}+\frac{\mathrm{Cx}}{\mathrm{C}-1}$
iv) If the given equation is solvable for y then it is of the form,
A) $y=f(x, p)$
B) $x=f(y, p)$
C) $x=f(y / p)$
D) $x=f(p / y)$
b. Solve $x^{2} p^{2}+p\left(3 x^{2}-2 y^{2}\right)-6 x y=0$ with solvable for P. (05 Marks)
c. Solve $(p x-y)(p y+x)=\alpha^{2} p$ with $x^{2}=u$ and $y^{2}=v$ using Clairut's form. (05 Marks)
d. Solve $y=x+a \tan ^{-1} p$.
(06 Marks)
2 a. Choose the correct answers for the following :
(04 Marks)
i) Solution of $\left(D^{3}-2 D+4\right) y=0$ is $y=$ \qquad .
A) $C_{1} e^{2 x}+C_{2} e^{-x} \cos x+C_{3} e^{-x} \sin x$
B) $C_{1} e^{2 x}+C_{2} e^{-x} \cos x$
C) $C_{1} e^{-2 x}+C_{2} e^{x} \cos x+C_{3} e^{x} \sin x$
D) $C_{1} \cos x+C_{2} \sin x$
ii) Particular integral of $\left(D^{2}+1\right) y=\sin 2 x$ is $y_{p}=$ \qquad .
A) $\frac{1}{3} \sin 2 x$
B) $\sin 2 x$
C) $\cos 2 x$
D) $-\frac{1}{3} \sin 2 x$
iii) Particular integral of $(D-1) y=\sinh x$ is $y=$ \qquad $-$
A) $\frac{1}{2}\left(x e^{x}+e^{-x}\right)$
B) $\frac{1}{2} x e^{-x}$
C) $\frac{1}{2}\left(\mathrm{e}^{-\mathrm{x}}+\mathrm{e}^{\mathrm{x}}\right)$
D) $\frac{1}{2}$
iv) The displacement in the simple harmonic motion $\frac{d^{2} x}{d t^{2}}=-\mu^{2} x$ is \qquad $-$
A) $\mathrm{C}_{1} \cos \mu \mathrm{t}-\mathrm{C}_{2} \sin \mu \mathrm{t}$
B) $C_{1} \cos \mu t+C_{2} \sin \mu t$
C) $\mathrm{C}_{1} \cos \mathrm{t}+\mathrm{C}_{2} \sin \mathrm{t}$
D) $C_{1} \cos t-C_{2} \sin t$
b. Solve $\left(D^{2}-6 D+13\right) y=8 e^{3 x} \sin 4 x+2^{x}$.
c. Solve $y^{\prime \prime}-2 y^{\prime}+y=x e^{x} \sin x$.
d. Solve $(D+3) x+(D+1) y=e^{t}$ and $(D+1) x+(D-1) y=t$. (06 Marks)

3 a. Choose the correct answers for the following :
(04 Marks)
i) Particular solution of $\left(D^{2}-1\right) y=1$ using variation of parameters is $y_{p}=$ \qquad .
A) -1
B) -2
C) -3
D) -4
ii) The differential equation, $x^{3} y^{\prime \prime \prime}+x^{2} y^{\prime \prime}=\log x$ reduces to the form when $x=e^{t}$ as,
A) $(\mathrm{D}+1)^{3} \mathrm{y}=\mathrm{t}$
B) $D(D-1)^{2} y=t$
C) $D^{3} y=0$
D) $D^{2} y=0$
iii) The complementary function of, $(1+x)^{2} y^{\prime \prime}+(1+x) y^{\prime}+y=2 \sin \log (x+1)$ with $(1+x)=e^{t}$ is $y_{c}=$ \qquad .
A) $C_{1} \cos t-C_{2} \sin t$
B) $C_{1} \cos 2 t+C_{2} \sin 2 t$
C) $C_{1} \cos t+C_{2} \sin t$
D) $C_{1} \cos 2 t-C_{2} \sin 2 t$
iv) In $P_{0}(x) y^{\prime \prime}+P_{1}(x) y^{\prime}+P_{2}(x) y=0$, if $P_{0}(x)=0$, then it has
A) Singular
B) Regular singularity
C) Exact
D) Homogeneous
b. Solve $\left(D^{2}-3 D+2\right) y=\frac{1}{1+e^{-x}}$ using variation of parameters.
(05 Marks)
c. Solve $x^{2} y^{\prime \prime}-x \frac{d y}{d x}+y=\log x$.
d. Solve $x y^{\prime \prime}+y^{\prime}+x y=0$ using Frobenius series solution method.
(05 Marks)

4 a. Choose the correct answers for the following
(04 Marks)
i) The partial differential equation of the relation $z=a x+a^{2} y^{2}+b$ is $q=$ \qquad .
A) $p^{2} y$
B) $2 p^{2} y$
C) $\mathrm{p}^{2} \mathrm{y}^{2}$
D) $2 \mathrm{py}^{2}$
ii) The solution of $\frac{\partial^{2} z}{\partial x^{2}}=z$ is $z=$
A) $C_{1}(x) e^{y}+C_{2}(x) e^{-y}$
B) $C_{1}(x) e^{y}-C_{2}(x) e^{-y}$
C) $C_{1}(y) e^{x}+C_{2}(y) e^{-x}$
D) $C_{1}(y) e^{x}-C_{2}(y) e^{-x}$
iii) The solution of $\mathrm{yq}-\mathrm{xp}=\mathrm{z}$ by Lagrange's method is \qquad $=0$
A) $f\left(\frac{x}{y}, \frac{y}{z}\right)$
B) $f\left(\frac{y}{x}, \frac{y}{z}\right)$
C) $f\left(x y z, \frac{y}{z}\right)$
D) $f\left(x y, \frac{y}{z}\right)$.
iv) The solution of $\frac{\partial u}{\partial x}=\frac{\partial u}{\partial y}$ by separation of variables with K as the common solution is
$\mathrm{u}=$
B) $\mathrm{Ce}^{\mathrm{Kxy}}$
C) $C e^{K(x+y)}$
D) Ce^{y}
b. Form the partial differential equation from the relation $f\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0$.
c. Solve $y^{2} p-x y q=x(z-2 y)$ using Lagrange's linear form.
d. Solve $x \frac{\partial z}{\partial x}-y \frac{\partial z}{\partial y}=0$ using separation of variables.
(06 Marks)

PART - B

5 a. Choose the correct answers for the following:
(04 Marks)
i) The value of $\int_{0}^{1} \int_{0}^{6} x y d x d y$ is \qquad .
A) 6
B) 7
C) 8
D) 9
ii) Area of the ellipse by double integration is = \qquad -
A) $\pi(a+b)$
B) $\pi(a-b)$
C) $\pi \mathrm{ab}$
D) $\pi(b-a)$
iii) The value of $\beta\left(\frac{1}{2}, \frac{1}{2}\right)=$ \qquad .
A) $\sqrt{\pi}$
B) π
C) $\pi+1$
D) $\frac{\pi}{2}$
iv) The value of $\Gamma\left(\frac{1}{4}\right) \times \Gamma\left(\frac{3}{4}\right)=$ \qquad
A) $\pi \sqrt{2}$
B) $2 \sqrt{\pi}$
C) $\sqrt{2 \pi}$
D) 2π
b. Change the order of integration in, $I=\int_{0}^{1} \int_{x^{2}}^{2-x} x y d y d x$ and hence evaluate.
(05 Marks)
c. Evaluate $\int_{1}^{e} \int_{1}^{\log _{5} y} \int_{i}^{c} \log z d z d x d y$.
(05 Marks)
d. Define Beta and Gamma functions, derive the relation as $\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$.
(06 Marks)
6 a. Choose the correct answers for the following :
(04 Marks)
i) If $\int_{C} F . d \vec{r}=0$ then F is called,
A) Singular
B) Irrotational
C) Solenoidal
D) Domain
ii) In Green's theorem $\iint_{\mathrm{S}}\left(\frac{\partial \mathrm{F}_{2}}{\partial \mathrm{x}}-\frac{\partial \mathrm{F}_{1}}{\partial \mathrm{x}}\right) \mathrm{dxdy}=$ \qquad .
A) $F_{1}+F_{2}$
B) $\int_{C}\left(F_{1} d x+F_{2} d x\right)$
C) $\int_{\mathrm{S}} \mathrm{F}_{1} \mathrm{dx}+\mathrm{F}_{2} \mathrm{dy}$
D) $\int_{c}\left(F_{1} d x+F_{1} d y\right)$
iii) In Stoke's theorem $\int_{\mathrm{C}} \mathrm{F} . \mathrm{dR}=$
A) \int_{C} curli: Nds
B) \int_{C} divF.Nds
C) $\int_{\text {C }}$ gradF.Nds
D) \int_{S} curlF.Nds
iv) If $\overrightarrow{\mathrm{F}}=\mathrm{x}^{3} \mathrm{i}+y^{3} \mathrm{j}+\mathrm{z}^{3} k$ then $\operatorname{divF}=$ \qquad
A) $x^{2}+y^{2}+z^{2}$
B) $2\left(x^{2}+y^{2}+z^{2}\right)$
C) $3\left(x^{2}+y^{2}+z^{2}\right)$
D) $3\left(x^{2} i+y^{2} j+z^{2} k\right)$
b. If $F=\left(3 x^{2}+6 y\right) i-14 y z j+20 x z^{2} k$, evaluate $\int_{C} F . d \vec{r}$ from $(0,0,0)$ to $(1,1,1)$ along the curve given by $x=t, y=t^{2}, z=t^{3}$.
(05 Marks)
c. Use Green's theorem to evaluate $\int_{C}(y-\sin x) d x+\cos x d y$, where C is the triangle in $x y$-plane bounded by the lines $y=0, x=\frac{\pi}{2}$ and $y=\frac{2 x}{\pi}$.
(05 Marks)
d. Use Gauss divergence theorem to evaluate $\int_{S} F$.Nds where $F=4 x y i+y z j-x z k$ and S is the surface of the cube bounded by the planes $x=0, x=2, y=0, y=2, z=0, z=2$.
(06 Marks)
7 a. Choose the correct answers for the following :
(04 Marks)
i) $\mathrm{L}\left\{\mathrm{e}^{-t} \cosh t\right\}=$ \qquad
A) $\frac{\mathrm{s}+1}{(\mathrm{~s}-1)^{2}+1}$
B) $\frac{\mathrm{s}-1}{(\mathrm{~s}+1)^{2}+1}$
C) $\frac{s+1}{(s-1)^{2}-1}$
D) None of these
ii) $\quad \mathrm{L}\left\{\mathrm{t}^{-1} \mathrm{f}(\mathrm{t})\right\}=$ \qquad
A) $\int_{s}^{\infty} F(s) d s$
B) $\int_{s}^{\infty} f(t) d t$
C) $\int_{t}^{\infty} F(s) d s$
D) $\int_{0}^{\infty} f(t) d t$
iii) When T denotes period of the function $f(t)$ then, $\frac{1}{1-e^{-S T}} \int_{0}^{T} e^{-s t} f(t) d t=$ \qquad .
A) $f(t)+C$
B) $L\left\{f(t) e^{-s t}\right\}$
C) $L\{f(t)\}$
D) $L\left\{e^{1}\right\}$
iv) In unit step function if $u(t-a)=0$ then,
A) $\mathrm{t}<\mathrm{a}$
B) $t \geq a$
C) $t=a$
D) $t \leq a$
b. Find the Laplace transform of the function $f(t)=t e^{-t} \sin ^{2} 3 t$.
(05 Marks)
c. Find the Laplace transform of the function,
$f(t)=\left\{\begin{array}{cc}t, & \text { for } 0<t \leq a \\ 2 a-t, & \text { for } a<t<2 a\end{array}, 2 a\right.$ is the period.
(05 Marks)
d. Express $f(t)$ in terms of unit step function and find the Laplace transform when,
$\mathrm{f}(\mathrm{t})=\left\{\begin{array}{cc}\mathrm{t}^{2}, & 0<\mathrm{t}<2 \\ 4 \mathrm{t}, & 2<\mathrm{t}<4 . \\ 8, & \mathrm{t}>4\end{array}\right.$
(06 Marks)

8 a. Choose the correct answers for the following
(04 Marks)
i) The value of $L^{-1}\left\{\frac{s^{2}-3 s+4}{s^{3}}\right\}=$
A) $1-3 t^{2}+2 t$
B) $\frac{1+3 t}{2 t^{2}}$
C) $1-3 t+2 t^{2}$
D) $\frac{1+2 t^{2}}{3 t}$
ii) The value of $L^{-1}\left\{\frac{s}{(s-2)^{2}}\right\}=$ \qquad
A) $\mathrm{e}^{2 t}(1-2 \mathrm{t})$
B) $e^{2 t}(1+2 t)$
C) $\mathrm{e}^{2 t}(2+2 \mathrm{t})$
D) $2+2 t$
iii) By convolution theorem $\mathrm{L}^{-1}\left\{\frac{1}{(\mathrm{~s}+1)(\mathrm{s}+2)}\right\}=$ \qquad
A) $\int_{0}^{\infty} e^{-t} e^{t-2} d t$
B) $\int_{0}^{t} e^{-t} e^{-\left(t^{2}-2\right)} d t$
C) $\int_{0}^{\mathrm{t}} \mathrm{e}^{-\mathrm{u}} \mathrm{e}^{-(1-\mathrm{u})(2)} \mathrm{du}$
D) $\int_{0}^{\infty} e^{-2 t} e^{t^{2}+1} d t$
iv) Laplace transform of $\frac{d y}{d t}+y=0$ with $y(0)=1$ is $=$ \qquad
A)
B) e^{t}
C) $t e^{t}$
D) $\frac{e^{t}}{t}$
b. Find the inverse Laplace transform of, $F(s)=\frac{2 s^{2}-6 s+5}{s^{3}-6 s^{2}+11 s-6}$.
(05 Marks)
c. Find $L^{-1}\left\{\frac{\mathrm{~s}}{(\mathrm{~s}-1)\left(\mathrm{s}^{2}+4\right)}\right\}$ by convolution theorem.
(05 Marks)
d. Solve by Laplace transform method, $\frac{d^{2} y}{d t^{2}}-3 \frac{d y}{d t}+2 y=4 t+12 e^{-t}$ with $y(0)=6, y^{\prime}(0)=-1$
(06 Marks)

